—N
SN

Abstract

In supervised domain adaptation—where a large out-of-domain corpus and
a smaller in-domain corpus are available for training—standard practice 1s to
initialize with a model trained on out-of-domain data, and then continue
training on in-domain data. We add an auxiliary term to the training
objective during continued training that minimizes cross entropy between
the model’s output distribution and that of the out-of-domain model to
prevent the model from ditfering too much from the original out-of-

domain model. We perform experiments on EMEA (descriptions of
medicines) and TED (rehearsed presentations), initialized from a general
domain (WMT) model. Our method shows improvements over standard

continued training by up to 1.5 BLEU.

Method

1) Train a model until convergence on out-of-domain bitext using L1
as the training objective (standard NMT loss; minimizes cross entropy
between and model output distribution

Lnin(0) = — Z (I{y; = v} x log p(yi = v|z;0;yj<i))

veV
2) Initialize a new model with the final parameters of Step 1

3) Train this model (from Step 2) until convergence on in-domain bitext
* Standard continued training uses Lny1

* We add regularization term, Lyeg, to the loss to also minimize cross
entropy between the model’s output distribution and that of the
out-of-domain model

This aims to prevents the model from differing too much from the
original out-of-domain model

_ Z ([ auw(yi =V ‘ 75 s yj<i)]

vey
x logp(ys = v|2;0;y;<i))
Our training objective for regularized continued training 1s the
interpolation of LNLL and Lreg :

£(9) — (1 — Oé) LNLL(Q) + « Lreg(e)
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Experiment

Data *
e Out-of-domain data:
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Results

Performance of each model on the two domains
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* In-domain data:
Ted Talks (~150,000 sents)
EMEA — medical descriptions.
(~1 million sents)
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e Performance of each model on two domains with 2k in-domain sents
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NMT settings
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OpenNMT-py out-of-domain
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RNN encoder-decoder with attention
BPE trained on out-of-domain text

Re-set learning parameters when continued-train w/ reg

switching to in-domain

Analysis

Is the additional training objective transferring
general knowledge to the in-domain model?
* Yes! It helps even when we use it without continued training

De-En En-De
training condition | EMEA-test | TED-test | EMEA-test [ TED-test
out-of-domain 30.8 29.8 25.1 25.9
in-domain 43.2 31.4 37.0 25.1
in-domain w/ reg |45.5 (+2.3) [31.2 (+0.2) |38.8 (+1.8) |26.0 (+0.9)

* However, this does not compare to the performance
of continued training, which is needed for
competitive results

* This regularization term is an easy addition to boost
continued training performance
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Possible explanations:
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F A show larger improvements?

H A has a lower OOV rate on the in-domain set
e TED has a lower OOV rate on the out-of-domain set

* TED is surprisingly similar to Europarl
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