Neural Lattice Search for **Domain Adaptation** in Machine Translation Huda Khayrallah, Gaurav Kumar Kevin Duh, Matt Post, Philipp Koehn This talk was presented at JHU CLSP seminar November 17, 2017 It is based on this paper: http://aclweb.org/anthology/I17-2004 bib: http://aclweb.org/anthology/I17-2004.bib

Neural Lattice Search for Domain Adaptation in Machine Translation

Huda Khayrallah, Gaurav Kumar Kevin Duh, Matt Post, Philipp Koehn

Outline

- Machine Translation
 - Phrase Based MT
 - Neural MT
 - MT metrics
 - Domain Adaptation
- Neural Lattice Search for Domain Adaptation in Machine Translation

Machine Translation (in ~20 min)

Huda Khayrallah 17 November 2017

Machine Translation

Goals: Adequacy & Fluency

What kind of data do we have?

What kind of systems do we build?

- Phrase-based MT
- Neural MT

Phrase-Based MT

- Source is segmented in to 'phrases'
- Phrases translated into target language
- Phrases are reordered

Phrase-Based MT

Translation Model

Phrase Extraction

Language Model

P(the cat is soft) > P(the cat are soft)
P(the cat is soft) > P(the cat soft is)

• *n*-gram (n = 5)

Decoding			
le	chat	est	doux
the	cat	is	soft
а	cat is		sweet
	cats	are	
	cats are		

Neural MT

- Each word is represented as a vector
- Recurrent neural net encoder and decoder

UNIVERSITY

24

[Sutskever et al. 2015]

(bidirectional) Neural MT

Neural MT (with attention)

Differences

PBMT – 5-gram history NMT – Full sentence history *Fluency?*

Explicit translation
 for each phrase

- Soft 'alignment'

Adequacy?

n-best rescoring

Khayrallah, Kumar, Duh, Post, Koehn

n-best rescoring

Khayrallah, Kumar, Duh, Post, Koehn

MT Metrics

- Metric should be:
 - Meaningful
 - Correct
 - Consistent
 - Low Cost
 - Useable for tuning

Why not WER?

- WER ≈ Edit Distance
- Does not account for reordering
- Exact match is not a great goal
 - Should the Ice Bucket Challenge be forbidden?
 - This "ice bucket" could be banned then?
 - Now are they going to ban the ice bucket?

BLEU

• Weighted *n*-grams precision

 $min\left(1,\frac{output \ length}{reference \ length}\right)\left(\prod_{i=1}^{4} precision_i\right)^{\frac{1}{4}}$

- Between 0 and 1
 - (often scaled to be 0-100)
- Higher is better
- Imperfect...
- But... not bad

How much text do we need?

Where does parallel text come from?

Would it not be beneficial, in the short term, following the Rotterdam model, to inspect according to a points system in which, for example, account is taken of the ship's age, whether it is single or double-hulled or whether it sails under a flag of convenience.

What do we want to translate?

Maritza RITZ Willis @RitzWillis

Follow

I have 2 children with me and tge, water is swallowing us up. Please send help. 911 is not responding!!!!!!

2:07 AM - 27 Aug 2017

Khayrallah

 \sim

Developmental toxicity, including dose-dependent delayed foetal ossification and possible teratogenic effects, were observed in rats at doses resulting in subtherapeutic exposures (based on AUC) and in rabbits at doses resulting in exposures 3 and 11 times the mean steady-state AUC at the maximum recommended clinical dose.

Khayrallah

Annual growth in prices came in at 10.9 per cent, more than double the gain of the 12 months to August 2013, but the gains were not evenly spread across the country

Domain adaptation:

-When train and test differ

Domain adaptation (in practice):

- Large amount of out-of-domain data
- -Small amount of in-domain data

Neural Lattice Search for Domain Adaptation in Machine Translation

Huda Khayrallah, Gaurav Kumar Kevin Duh, Matt Post, Philipp Koehn

combine adequacy of PBMT with fluency of NMT

use PBMT to constrain the search space of NMT

Experiments

Setting: Domain adaptation

Small in-domain

IT, Medical, Koran, Subtitles PBMT outperforms NMT

Large out-of-domain parliamentary proceedings (WMT) NMT outperforms PBMT

How much text do we have?

IT Results

Results

Conclusion

- Lattice search > *n*-best rescoring
- Use in-domain PBMT to constrain search space
- NMT can be in- or out-of-domain

Code:

github.com/khayrallah/nematus-lattice-search

Thanks!

This material is based upon work supported in part by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-15-C-0113.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).

Neural Lattice Search for Domain Adaptation in Machine Translation

Huda Khayrallah, Gaurav Kumar Kevin Duh, Matt Post, Philipp Koehn {huda, gkumar, kevinduh, post, phi}@cs.jhu.edu

code:

github.com/khayrallah/nematus-lattice-search

BLEU

$$min\left(1,\frac{output \ length}{reference \ length}\right)\left(\prod_{i=1}^{4} precision_{i}\right)^{\frac{1}{4}}$$

Corpus Sizes

Corpus	Words	Sentences	W/S
Medical	14,301,472	1,104,752	13
IT	3,041,677	337,817	9
Koran	9,848,539	480,421	21
Subtitles	114,371,754	13,873,398	8
EuroParl	113,165,079	4,562,102	25

Test	Training Configuration	PBMT	NMT	N-best	NMT
Domain		1-best	Standard Search	Rescoring	Lattice Search
IT	$PBMT_{out} \times NMT_{out}$	25.1 (-0.3)	22.5 (-2.9)	22.2 (-3.2)	25.4
	$PBMT_{in} \times NMT_{in}$	47.4 (-4.2)	34.2 (-17.4)	47.6 (-4.0)	51.6
	$PBMT_{in} \times NMT_{out}$	47.4 (-5.2)	22.5 (-30.1)	47.6 (-5.0)	52.6*
	$PBMT_{out} \times NMT_{in}$	25.1 (-2.2)	34.2 (6.9)	22.4 (-4.9)	27.3
Medical	$PBMT_{out} \times NMT_{out}$	33.3 (-0.9)	32.9 (-1.3)	30.8 (-3.4)	34.2
	$PBMT_{in} \times NMT_{in}$	47.4 (-0.7)	37.8 (-10.3)	40.2 (-7.9)	48.1*
	$PBMT_{in} \times NMT_{out}$	47.4 (-0.4)	32.9 (-14.9)	39.7 (-8.1)	47.8
	$PBMT_{out} \times NMT_{in}$	33.3 (-2.7)	37.8 (1.8)	31.2 (-4.8)	36.0
Koran	$PBMT_{out} \times NMT_{out}$	14.7 (-0.2)	10.8 (-4.1)	13.9 (-1.0)	14.9
	$PBMT_{in} \times NMT_{in}$	20.6 (-0.1)	15.9 (-4.8)	19.3 (-1.4)	20.7
	$PBMT_{in} \times NMT_{out}$	20.6 (-0.2)	10.8 (-10.0)	19.4 (-1.4)	20.8*
	$PBMT_{out} \times NMT_{in}$	14.7 (-1.4)	15.9 (-0.2)	13.9 (-2.2)	16.1
Subtitle	$PBMT_{out} \times NMT_{out}$	26.6 (-0.9)	25.3 (-2.2)	19.7 (-7.8)	27.5
	$PBMT_{in} \times NMT_{in}$	26.8 (-1.1)	24.9 (-3.0)	17.8 (-10.1)	27.9
	$PBMT_{in} \times NMT_{out}$	26.8 (-1.6)	25.3 (-3.1)	17.1 (-11.3)	28.4*
	$PBMT_{out} \times NMT_{in}$	26.6 (-1.0)	24.9 (-2.7)	19.8 (-7.8)	27.6

Source	Versionsinformationen ausgeben und beenden
Reference	output version information and exit
PBMT	Spend version information and end
NMT	Spend and end versionary information
lattice	Print version information and exit

IT Baselines

Khayrallah, Kumar, Duh, Post, Koehn

Results

Khayrallah, Kumar, Duh, Post, Koehn

Stack Based Decoding

- Stacks based on number of target words translated
- Keep track of:
 - Score
 - Current lattice node
 - Current neural state
 - incoming arc
 - length

Khayrallah, Kumar, Duh, Post, Koehn

Phrase-Based MT

P(target|source) = P(source|target) P(target)

